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Bunkyo-ku, Tokyo 113-8656, Japan
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Abstract. A new integrable variant of the one-dimensional Hubbard model with variable-range
correlated hopping is studied. The Hamiltonian is constructed by applying the quantum inverse
scattering method on the infinite interval at zero density to the one-parameter deformation of the
L-matrix of the Hubbard model. By construction, this model has Y(su(2))⊕Y(su(2)) symmetry
in the infinite chain limit. Multiparticle eigenstates of the model are investigated by using this
method.

1. Introduction

As a model of strongly correlated electrons, the Hubbard model has been attracting much
interest in solid state physics. In particular, in one dimension, the model is exactly
solvable [1] and its thermodynamic properties can be calculated out, which give a good
testing ground for theories of strongly correlated electron systems. From the viewpoint
of integrability and algebraic aspects of the one-dimensional Hubbard model, there have
been many works, including the pioneering work of the coordinate Bethe ansatz by Lieb
and Wu [2], the quantum inverse scattering method [3–6], its SO(4) invariance [7–9],
Y(su(2))⊕ Y(su(2)) invariance in the infinite chain limit [10] and the recent development
of the algebraic and analytic Bethe ansatz [11, 12]. Recently, there has been increasing
interest in such algebraic aspects of the integrable systems, especially in quantum groups.
For example, Hikami [13] and Bouwknegt and Schoutens [14] studied Yangian symmetry
underlying in the Haldane–Shastry spin chain and obtained its character formula. Karowski
and Zapletal [15] invented anUq(sl(n))-invariant model, and Gouldet al [16] studied
quantum superalgebra to obtain new integrable models of correlated electrons.

Let us return to the one-dimensional Hubbard model. One of the novel properties of
theR-matrix R(λ,µ) of the model is that it is thought to be impossible to express it as a
function of a difference of two spectral parametersλ andµ. This lack of the ‘difference
property’ has prevented us from investigating underlying integrable structures of the model.
For example, it is not known whether thisR-matrix is expressible as an intertwiner of
a certain algebra. Since the methods for calculating various correlation functions known
so far [17, 18] requires an understanding of such underlying structures of the model to
some extent, it is necessary to deepen our knowledge of the mathematical structures of the
Hubbard model in order to calculate correlation functions.

† E-mail address: murakami@appi.t.u-tokyo.ac.jp
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Although, at first glance, the absence of the ‘difference property’ merely complicates
the situation, it gives rise to a one-parameter integrable extention of theL-matrix and
the Hamiltonian of the Hubbard model as was noticed by Shiroishi and Wadati [19]. This
extended Hubbard model is interpreted as an electronic model with on-site and neighbouring-
site interactions and correlated hopping to the neighbouring sites. Although the form of the
Hamiltonian is complicated and thus is difficult to be equipped with physical meaning, it
can be of some help with the understanding of the structures of the original Hubbard model.

On the other hand, we have recently discovered that theR-andL-matrices of the one-
dimensional Hubbard model can be put into a formulation of quantum inverse scattering
method (QISM) on an infinite interval [20, 21], which has been applied to other integrable
models [22, 23]. Using that method, we can derive the existence of Yangian symmetry
Y(su(2)) ⊕ Y(su(2)) and constructn-particle states upon zero-density vacuum. Based on
this work, the aim of this paper is to put the one-parameter deformedL-matrix, which
is described in the previous paragraph, into the same formulation of the QISM on an
infinite interval. Through this procedure, a new electronic Hamiltonian with variable-
range correlated hopping arises. It can be embedded in a family of an infinite number
of commuting operators and thus is interpreted as a one-parameter integrable deformation
of the Hubbard chain. As is the case for the usual Hubbard chain, Yangian invariance of
the Hamiltonian and construction of multiparticle states can be directly established as a
by-product of this method.

This paper is organized as follows. In section 2 we shall explain the integrability of the
Hubbard chain of finite length and a one-parameter deformation of that model. Section 3
is devoted to the application of the QISM on an infinite interval to the one-parameter
deformation of theL-matrix. Its resulting new Hamiltonian and commuting conserved
operators are developed in section 4. The Yangian Y(su(2)) ⊕ Y(su(2)) invariance of the
model follows by construction. In section 5, we shall construct multiparticle states upon
the zero-density vacuum by use of symmetries and algebras of some operators. Section 6
contains concluding remarks and discussions.

2. Hamiltonian and monodromy matrix on the finite interval

The Hamiltonian for the one-dimensional Hubbard model is

Ĥ = −
∑

j,σ=↑,↓
(c
†
j+1,σ cj,σ + c†j,σ cj+1,σ )+ U

∑
j

(nj↑ − 1
2)(nj↓ − 1

2) (2.1)

wherecjσ and c†jσ are respectively the fermion annihilation and creation operators which

satisfy the usual anticommutation relations, andnjσ = c†jσ cjσ is the particle number operator.
This Hamiltonian has a large symmetry. First, it is invariant under the partial particle–hole
transformation:

cj↑ → cj↑ cj↓ → (−1)j c†j↓ U →−U. (2.2)

Second, it is invariant under SO(4) algebra generated bySa and ηa (a = x, y, z). Sa

is the usual spin-SU(2) operator defined bySa = 1
2

∑
j σ

a
αβc
†
jαcjβ , and ηa is obtained by

performing the partial particle–hole transformation (2.2) toSa. If we go to the infinite chain
limit, the symmetry is enhanced to Y(su(2))⊕ Y(su(2)) Yangian [10].

The integrability of the fermionic Hubbard model (2.1) is based on a local exchange
relation [6]

Ř(λ, µ)[Lj (λ)⊗sLj (µ)] = [Lj (µ)⊗sLj (λ)]Ř(λ, µ) (2.3)
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where⊗s denotes the Grassman tensor product

[A⊗sB]αγ,βδ = (−1)[P(α)+P(β)]P(γ )AαβBγδ (2.4)

with the gradingP(1) = P(4) = 0, P(2) = P(3) = 1. The expressions for the matricesŘ
andL are presented in the appendix†. In these expressions, we use a functionh(λ) defined
by

sinh 2h(λ)

sin 2λ
= U

4
. (2.5)

The Hamiltonian (2.1) is reproduced by a logarithmic derivative of the transfer matrix
τmn(λ);

Ĥ = d

dλ
ln τmn(λ)|λ=0 τmn(λ) = str(Tmn(λ)) ≡ tr((σ z ⊗ σ z)Tmn(λ)) (2.6)

where the monodromy matrixT is given by

Tmn(λ) = Lm−1(λ)Lm−2(λ) . . .Ln(λ)(m > n) (2.7)

and str in (2.6) denotes the supertrace or the graded trace.
There is known to be an integrable spin chain equivalent to the Hubbard model [3, 4].

If we apply the Jordan–Wigner transformation

cj↑ = σ zn . . . σ zj−1σ
−
j cj↓ = (σ zn . . . σ zm−2σ

z
m−1)τ

z
n . . . τ

z
j−1τ

−
j (2.8)

whereσ and τ are the Pauli matrices, andσ±j = (σ xj ± iσyj )/2, τ±j = (τ xj ± iτ yj )/2, we
obtain an equivalent spin model

Ĥ =
∑
j

(σ+j+1σ
−
j + σ+j σ−j+1)+

∑
j

(τ+j+1τ
−
j + τ+j τ−j+1)+

U

4

∑
j

σ zj τ
z
j . (2.9)

Its integrability is supported by the spin-chain counterpart of the exchange relation [4]

Ř(λ, µ)[Lj(λ)⊗ Lj(µ)] = [Lj(µ)⊗ Lj(λ)]Ř(λ, µ). (2.10)

Here Ř(λ, µ) and Lj(λ), whose expressions can be found in [6], are the spin-chain
counterparts ofŘ(λ, µ) andLj (λ), respectively. As Olmedillaet al [6] found, the exchange
relation of the fermionic model, (2.3), and that of the spin chain, (2.10), can be transformed
into each other.

One of the peculiarities on the integrability of the Hubbard model that has been known
for years is that thěR-matrix, or equivalently thěR-matrix, is believed to lack the difference
property, i.e. it is not a function ofλ − µ, nor can it be expressed asf (λ) − f (µ) with
some functionf . This has been an obstruction for further investigations of the underlying
mathematical structures of the Hubbard model. However, on the other hand, the lack of
the difference property allows us to consider a one-parameter integrable deformation of the
Hubbard model, as noted by Shiroishi and Wadati [19]. This works as follows. By using
the Yang–Baxter equation

R12(λ, µ)R13(λ, ν)R23(µ, ν) = R23(µ, ν)R13(λ, ν)R12(λ, µ) (2.11)

whereRij (λ, µ) = Pij Řij (λ, µ) andPij is the transposition (P(x ⊗ y) = y ⊗ x), a new
L-matrix defined by

L1(λ)ν = R13(λ, ν) (2.12)

† The matrixR in [6, 20, 21] is written asŘ in this paper, following the standard notation. It should not be
confused with the matrix written in the standard notation asR = PŘ.
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satisfies an exchange relation

R12(λ, µ)L1(λ)νL2(µ)ν = L2(µ)νL1(λ)νR12(λ, µ). (2.13)

It can alternatively be written as

Ř(λ, µ)[L(λ)ν ⊗ L(µ)ν ] = [L(µ)ν ⊗ L(λ)ν ]Ř(λ, µ). (2.14)

Considering thatL(λ)ν=0 ∝ L(λ), which can be checked by a direct calculation, we can say
that L(λ)ν is a one-parameter deformation of theL-matrix L(λ) of the original Hubbard
model. This newL-matrix can be used to produce a new Hamiltonian [19]. By using the
monodromy matrix given by

Tmn(λ)ν = Lm−1(λ)νLm−2(λ)ν . . . Ln(λ)ν (m > n) (2.15)

the new Hamiltonian is given by

Ĥν = d

dλ
ln tr(Tmn(λ)ν)|λ=ν = −

∑
j,σ=↑,↓

(c
†
j+1,σ cj,σ + c†j,σ cj+1,σ )

+ U

4 cosh 2h(ν)

∑
j

(2nj↑ cos2 ν − 2nj+1↑ sin2 ν

+ sin 2ν(c†j↑cj+1↑ − c†j+1↑cj↑)− cos 2ν)

×(2nj↓ cos2 ν − 2nj+1↓ sin2 ν + sin 2ν(c†j↓cj+1↓ − c†j+1↓cj↓)− cos 2ν). (2.16)

We have performed the Jordan–Wigner transformation to get a fermionic Hamiltonian.
The reason for choosing the special valueλ = ν is to obtain a local Hamiltonian. This
Hamiltonian is Hermitian ifν is pure imaginary, and in that case it represents a model with
on-site and neighbouring-site interaction and correlated hopping to the neighbouring sites.
The exchange relation (2.14) results in

[ln tr Tmn(λ)ν, ln tr Tmn(µ)ν ] = 0. (2.17)

Therefore, the Hamiltonian is embedded in a family of infinite number of commuting
operators, and so the model (2.16) is integrable. The model (2.16) includes the Hubbard
model (2.1) as in theν = 0 case.

So far we have discussed a spin chain version of the exchange relation (2.14). We can
employ the same procedure used in [6] to fermionize the exchange relation of the spin chain
(2.14), and we obtain

Ř(λ, µ)[Lj (λ)ν ⊗sLj (µ)ν ] = [Lj (µ)ν ⊗sLj (λ)ν ]Ř(λ, µ). (2.18)

The explicit form ofLj (λ)ν is presented in the appendix. The exchange relation (2.14) and
(2.18) can be considered as a one-parameter deformation of (2.10) and (2.3), respectively.
Note thatŘ(λ, µ) or Ř(λ, µ) is unchanged by this one-parameter deformation.

3. Passage to the infinite interval

Next we pass to the infinite interval limit using the new exchange relation (2.18).
The method is identical with the one in our previous works on the original Hubbard
model [20, 21]. Let

Tmn(λ)ν = Lm−1(λ)νLm−2(λ)ν . . .Ln(λ)ν (3.1)

T (2)mn (λ, µ)ν = Tmn(λ)ν ⊗s Tmn(µ)ν (3.2)
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where Tmn(λ)ν is a monodromy matrix on the finite interval. To consider the infinite-
chain limit of the monodromy matrix, we should split off the asymptotics of its vacuum
expectation value form,−n → ∞. Hence, this procedure is restricted to uncorrelated
vacua, with which one can calculate vacuum expectation value of the monodromy matrix.
Among four uncorrelated vacua, in which the electron density of each spin is either zero or
unity, we take the zero-density vacuum|0〉 to renormalize the monodromy matrix. We use
the following two matrices

V (λ)ν = 〈0|Lj (λ)ν |0〉 V (2)(λ, µ)ν = 〈0|Lj (λ)ν ⊗sLj (µ)ν |0〉 (3.3)

in order to normalizeTmn(λ) andT (2)mn (λ, µ), respectively;

T̃ (λ)ν = lim
m,−n→∞V (λ)

−m
ν Tmn(λ)νV (λ)nν (3.4)

T̃ (2)(λ, µ)ν = lim
m,−n→∞V

(2)(λ, µ)−mν T (2)mn (λ, µ)νV
(2)(λ, µ)nν . (3.5)

These limits converge in the weak sense, though the matricesTmn(λ)ν andT (2)mn (λ, µ)ν do
not have a definite limit whenm,−n→∞. We shall callT̃ (λ)ν a monodromy matrix on
the infinite interval. It allows an alternative definition:

T̃ (λ)ν = I4+
∑
j

(L̃j (λ)ν − I4)+
∑
j>i

(L̃j (λ)ν − I4)(L̃i (λ)ν − I4)+ . . . (3.6)

whereL̃j (λ)ν = V (λ)−j−1
ν Lj (λ)νV (λ)jν andI4 denotes the 4× 4 unit matrix.

For practical calculations, one should be careful thatV (2)(λ, µ)ν is not equal to the
tensor productV (λ)ν ⊗s V (µ)ν . There appear additional off-diagonal elements due to
normal ordering of operators. Direct calculations lead us to the resulting forms forV (λ)ν
andV (2)(λ, µ)ν ;

V (λ)ν = diag(−ρ8(λ, ν), ρ9(λ, ν), ρ9(λ, ν),−ρ1(λ, ν)).

As for the matrixV (2)(λ, µ)ν , its diagonal consists of the elements ofV (λ)ν ⊗sV (µ)ν , and
its non-vanishing off-diagonal elements are

V (2)(λ, µ)12,21
ν = V (2)(λ, µ)13,31

ν = −iρ6(λ, ν)ρ6(µ, ν)

V (2)(λ, µ)14,23
ν = −V (2)(λ, µ)14,32

ν = −iρ6(λ, ν)ρ2(µ, ν)

V (2)(λ, µ)24,42
ν = V (2)(λ, µ)34,43

ν = iρ2(λ, ν)ρ2(µ, ν)

V (2)(λ, µ)23,41
ν = −V (2)(λ, µ)32,41

ν = −iρ2(λ, ν)ρ6(µ, ν)

V (2)(λ, µ)14,41
ν = −ρ3(λ, ν)ρ3(µ, ν).

Note that V (2)(λ, µ)ν is upper triangular. Since the diagonals ofV (2)(λ, µ)ν and
V (λ)⊗sV (µ)ν are identical,V (2)(λ, µ)ν can be diagonalized by an upper triangular matrix
U(λ,µ) whose diagonal elements are all unity;

V (2)(λ, µ)ν = U(λ,µ)ν(V (λ)ν ⊗s V (µ)ν)U(λ, µ)
−1
ν . (3.7)

Direct calculation leads us to a remarkable and surprising fact;U(λ,µ)ν is independent of
ν. It is equal toU(λ,µ)ν=0 = U(λ,µ), which has appeared in the analysis of the usual
Hubbard chain [20], so we will hereafter suppress the subscriptν in U(λ,µ)ν . Its matrix
elements are

U(λ,µ)12,21 = U(λ,µ)13,31 = −iρ2/ρ10 U(λ,µ)14,23 = −U(λ,µ)14,32 = iρ6/ρ8

U(λ,µ)24,42 = U(λ,µ)34,43 = iρ2/ρ9 U(λ,µ)23,41 = −U(λ,µ)32,41 = iρ6/ρ7

U(λ,µ)14,41 = −ρ5/ρ7
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whereρi = ρi(λ, µ).
Taking the vacuum expectation value of the local exchange relation (2.3) yields

Ř(λ, µ)V (2)(λ, µ)ν = V (2)(µ, λ)νŘ(λ, µ) (3.8)

and we conclude that

Ř(λ, µ)T̃ (2)(λ, µ)ν = T̃ (2)(µ, λ)νŘ(λ, µ). (3.9)

Finally, collating (3.9) and other equations together, we arrive at the exchange relation
for the monodromy matrix̃T (λ)ν on the infinite interval,

R̃(+)(λ, µ)[T̃ (λ)ν ⊗s T̃ (µ)ν ] = [T̃ (µ)ν ⊗s T̃ (λ)ν ]R̃(−)(λ, µ) (3.10)

where

R̃(±)(λ, µ)ν = U±(µ, λ)−1
ν Ř(λ, µ)U±(λ, µ)ν (3.11)

U±(λ, µ)ν = lim
m→±∞V

(2)(λ, µ)−mν [V (λ)mν ⊗s V (µ)
m
ν ]. (3.12)

Since the calculation of the matricesU±(λ, µ)ν andR̃(±)(λ, µ)ν is rather technical, we do
not reproduce it here. Its details are presented in [21] in the case ofν = 0 (Hubbard model).
The only point we should note here is that apart from some singular points (e.g.λ = µ),
we can say thatU(λ,µ) = U±(λ, µ)ν and

R̃(λ, µ) = R̃(±)(λ, µ)ν

=



ρ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0
ρ1ρ4
iρ10

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
ρ1ρ4
iρ10

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
−ρ1ρ4
ρ5−ρ4

0 0 0

0 −iρ10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ρ4 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
ρ3ρ4−ρ2

2
ρ3−ρ1

0 0
ρ9ρ10
ρ3−ρ1

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
iρ1ρ4
ρ9

0 0

0 0 −iρ10 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
ρ9ρ10
ρ3−ρ1

0 0
ρ3ρ4−ρ2

2
ρ3−ρ1

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 ρ4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
iρ1ρ4
ρ9

0

0 0 0 ρ1 − ρ3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 iρ9 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 iρ9 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρ1


(3.13)

whereρi = ρi(λ, µ). Let us write the elements of̃T (λ) as

T̃ (λ)ν =


D11(λ)ν C11(λ)ν C12(λ)ν D12(λ)ν
B11(λ)ν A11(λ)ν A12(λ)ν B12(λ)ν
B21(λ)ν A21(λ)ν A22(λ)ν B22(λ)ν
D21(λ)ν C21(λ)ν C22(λ)ν D22(λ)ν

 . (3.14)

Since theR̃-matrix is independent of the value ofν, the commutation rules between the
elements ofT̃ (λ), which are obtained from the exchange relation (3.10), are exactly the
same as those in theν = 0 case, i.e. the usual Hubbard model. A complete list of the
commutation rules is found in appendix B of [21], and it is the same in this case.

4. Yangian symmetry and commuting operators

If we follow the notion of the quantum inverse scattering method, the remaining task is
to investigate the meaning of each matrix element ofT̃ (λ)ν . As is also the case for the
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Hubbard model [21], the commutation relations between the elements of the submatrix
A(λ)ν decouple from the rest of the algebra

r(λ, µ) (A(λ)ν ⊗ A(µ)ν) = (A(µ)ν ⊗ A(λ)ν) r(λ, µ) (4.1)

where

r(λ, µ) = ρ3ρ4− ρ2
2 + ρ9ρ10P

ρ4(ρ3− ρ1)
(ρj = ρj (λ, µ)) (4.2)

andP is a 4× 4 permutation matrix (Px ⊗ y = y ⊗ x). As is remarked previously, (4.1)
is identical to the one in the Hubbard model (ν = 0) and we can follow the same argument
as in the previous work [21]. By the reparametrization

v(λ) = −2i cot 2λ cosh 2h(λ) (4.3)

theR-matrix r(λ, µ) turns into the rationalR-matrix of theXXX spin chain,

r(λ, µ) = iU + (v(λ)− v(µ))P
iU + v(λ)− v(µ) . (4.4)

Let us expandA(λ)ν in terms ofv(λ)−1,

A(λ)ν = I2+ iU
∞∑
n=0

1

v(λ)n+1

(
3∑
a=1

Qa
n(ν)σ̃

a +Q0
n(ν)I2

)
(4.5)

where σ̃ x = −σy , σ̃ y = σx , σ̃ z = σ z, and I2 is the 2× 2 unit matrix. This expansion
can be achieved by considering the limitv(λ)→∞ as Im(λ)→∞ and by choosing the
proper branch of the solution of (2.5), which determinesh as a function ofλ. Equation (2.5)
implies that

e−2h(λ) = −U
4

sin 2λ±
√

1+
(
U

4
sin 2λ

)2

. (4.6)

To achieve convergence of the matrix elementsA(λ)ν , we have to choose the lower sign here.
Then it follows from general considerations [24–26] that the first six operatorsQa

0(ν),Q
a
1(ν)

generate a representation of the Y(su(2)) Yangian quantum group.
There is an alternative description of the Yangian Y(su(2)) [28] described below. The

Yangian Y(su(2)) is a Hopf algebra spanned by six generatorsQa
n (n = 0, 1, a = x, y, z),

satisfying the following relations,

[Qa
0,Q

b
0] = f abcQc

0 (4.7)

[Qa
0,Q

b
1] = f abcQc

1 (4.8)

[[Qa
1,Q

b
1], [Qc

0,Q
d
1]] + [[Qc

1,Q
d
1], [Qa

0,Q
b
1]]

= κ2(Aabkefgf cdk + Acdkefgf abk){Qe
0,Q

f

0 ,Q
g

1}. (4.9)

Hereκ is a nonzero constant,f abc = iεabc is the antisymmetric tensor of structure constants
of su(2), andAabcdef = f adkf belf cfmf klm. The bracket{ } in (4.9) denotes the symmetrized
product

{x1, x2, x3} = 1

3!

∑
σ∈S3

xσ1xσ2xσ3. (4.10)

The Hopf algebra structure of Y(su(2)) is described in [28] and its representation theory,
which will be used later, is developed in [29, 30].
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We can use (4.5) and (3.6) to obtain the representation of Yangian generators;

Qa
0(ν) =

1

2

∑
j

σ aαβc
†
j,αcj,β (4.11)

Qa
1(ν) =

i

2 sinν cosν

[∑
i>j

(tanν)i−je2h(ν)(2−ni−nj )σ aαβc
†
iαcjβ

+
∑
i<j

(− cotν)i−je−2h(ν)(2−ni−nj )σ aαβc
†
iαcjβ

]
− iU

4

∑
i,j

sgn(j − i)σ aαβc†i,αc†j,γ ci,γ cj,β + iUcot2h(ν) sin2 ν Qa
0(ν). (4.12)

In this case the constantκ in (4.9) is equal to iU . Note thatQa
0(ν) = Sa is just the operator

of thea-component of the total spin. The representation of the Yangian algebra in the usual
Hubbard model [10, 20] is a special case ofν = 0 in (4.11) and (4.12).

Since the quantum determinant

DetqA(λ)ν = A11(λ)νA22(λ̌)ν − A12(λ)νA21(λ̌)ν (4.13)

whereλ̌ is defined by the relationv(λ̌) = v(λ)− iU , is in the centre of the Yangian

[DetqA(λ)ν, A(µ)ν ] = 0 (4.14)

it provides a generating function of mutually commuting operators,

[DetqA(λ)ν,DetqA(µ)ν ] = 0. (4.15)

The asymptotic expansion in terms ofv(λ)−1,

DetqA(λ)ν = 1+ iU
∞∑
n=0

Jn(ν)

v(λ)n+1
(4.16)

producesJ0(ν) = 0, J1(ν) = iĤlong, where

Ĥlong = − 1

sinν cosν

[∑
i>j

(tanν)i−je2h(ν)(1−ni,−σ−nj,−σ )c†iσ cjσ

−
∑
i<j

(− cotν)i−je−2h(ν)(1−ni,−σ−nj,−σ )c†iσ cjσ

]
+U(1+ 2 sin2 ν)

∑
i

[(nj↑ − 1
2)(nj↓ − 1

2)− 1
4]. (4.17)

Due to the relation (4.15), theJn(ν)’s mutually commute. Therefore,̂Hlong can be
embedded in a family of infinite number of commuting operators, and can be regarded as
a integrable Hamiltonian. Moreover, (4.14) indicates the Y(su(2)) invariance of the model;

[Qa
0(ν), Ĥlong] = 0= [Qa

1(ν), Ĥlong] (a = 1, 2, 3). (4.18)

In particular, it implies that the model is su(2) invariant. By subtracting a constant from
Ĥlong, we can make this Hamiltonian invariant under partial particle–hole transformation
(2.2):

Ĥ ′long = −
1

sinν cosν

[∑
i>j

(tanν)i−je2h(ν)(1−ni,−σ−nj,−σ )c†iσ cjσ
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−
∑
i<j

(− cotν)i−je−2h(ν)(1−ni,−σ−nj,−σ )c†iσ cjσ

]
+U(1+ 2 sin2 ν)

∑
j

(nj↑ − 1
2)(nj↓ − 1

2). (4.19)

This complicated Hamiltonian can be made simpler by noting (2.5) to obtain

Ĥ ′′long = −i sinν cosνĤ ′long = i
∑
i>j

(
i

r

)i−j
eiJ (1−ni,−σ−nj,−σ )c†iσ cjσ + h.c.

+6− 2r2

1− r2
sinJ

∑
j

(nj↑ − 1
2)(nj↓ − 1

2) (4.20)

wherer = i cotν, J = −2ih(ν) andr andJ are real. We will, however, use the Hamiltonian
(4.19) instead of (4.20), since it is easier to extract information about the model out of the
quantum inverse scattering method.

The Y(su(2)) invariance ofĤ ′long shown in (4.18), together with the invariance under
the partial particle–hole transformation (2.2), leads us to the result

[Qa
0(ν), Ĥ

′
long] = 0= [Qa

1(ν), Ĥ
′
long] (4.21)

[Qa′
0 (ν), Ĥ

′
long] = 0= [Qa′

1 (ν), Ĥ
′
long] (4.22)

where Qa′
n (ν) is obtained by performing the partial particle–hole transformation (2.2)

toQa
n(ν). By construction, the operatorsQa′

n (ν) form another Y(su(2)) algebra, and we
can straightforwardly verify that [Qa

m(ν),Q
b′
n (ν)] vanishes fora, b = x, y, z; m, n = 0, 1.

Therefore, we can say that the HamiltonianĤ ′long is Y(su(2))⊕ Y(su(2)) invariant.

Hereafter we shall assumêH ′long to be Hermitian, i.e.U is real and bothν and h(ν)

are pure imaginary. With this assumption,Ĥ ′long can be regarded as a new Hamiltonian for
electrons with on-site interaction and variable range hopping. The amplitude of the hopping
decays exponentially with the hopping range. There is also an interference effect due to
the term exp(±2h(ν)(1− ni,−σ − nj,−σ )). One can easily check that in theν = 0 limit the
hopping terms vanish except for the ones to the neighbouring sites, and the usual Hubbard
model is restored in this limit. In that sense it is an integrable extension of the Hubbard
model (2.1) with variable range hopping.

There is another integrable Hubbard model with variable range hopping discovered
earlier [31]. Its Hamiltonian is given by

H =
∑
σ,i 6=j

t (i − j)c†iσ cjσ + U
∑
j

nj↑nj↓ (4.23)

with

t (s) = −it (−1)s
(
L

π
sin

πs

L

)−1

(4.24)

or

t (s) = −i sinhκ(−1)s/ sinh(κs). (4.25)

Although both our model and the above model contain the usual nearest-neighbour-hopping
Hubbard model as a limiting case, we do not know whether they can be related to each
other.

To close this section, we shall add a comment. The HamiltonianĤlong obtained here is
different fromĤν obtained from a logarithmic derivative of the monodromy matrixTmn(λ)ν
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on the finite interval. Such things do not occur in the previously studied cases of the
fermionic nonlinear Schrödinger model [26] or the Hubbard model [20, 21]. The relation
between the two HamiltonianŝHlong andĤν is left as a future problem.

5. Construction of eigenvectors

5.1. Creation operators of quasiparticles

As is the case with the usual Hubbard chain and other integrable models, the entries of the
monodromy matrixT̃ (λ) can be used to construct multiparticle eigenstates on the vacuum.
By calculating commutators between these entries ofT̃ (λ) and the particle number operator
N̂ , we can see thatBa1(λ)ν andC2a(λ)ν addN̂ by one andD21(λ)ν addsN̂ by two, while
Ba2(λ)ν andC1a(λ)ν reduceN̂ by one andD12(λ)ν does by two.Aab(λ)ν , D11(λ)ν and
D22(λ)ν keepN̂ unchanged. To gain further insight, let us calculate actions of the operators
in T̃ (λ) onto the vacuum|0〉. By using (3.6), some simplest ones are calculated as follows

B11(λ)ν |0〉 = − iρ6

ρ9

∑
j

e−ijp(λ,ν)c
†
j↓|0〉 (5.1)

B21(λ)ν |0〉 = ρ6

ρ9

∑
j

e−ijp(λ,ν)c
†
j↑|0〉 (5.2)

C21(λ)ν |0〉 = −ρ2

ρ1

∑
j

e−ijk(λ,ν)c
†
j↑|0〉 (5.3)

C22(λ)ν |0〉 = − iρ2

ρ1

∑
j

e−ijk(λ,ν)c
†
j↓|0〉 (5.4)

D21(λ)ν |0〉 =
∑
j,l

c
†
j↑c
†
l↓

[
θ(j > l)

iρ6ρ2

ρ9ρ1
e−ijk(λ,ν)−ilp(λ,ν) + θ(j < l)

iρ6ρ2

ρ9ρ1
e−ijp(λ,ν)−ilk(λ,ν)

+ δjl iρ3

ρ1
e−ij{p(λ,ν)+k(λ,ν)}

]
|0〉 (5.5)

whereρj = ρj (λ, ν) and

e−ik(λ,ν) = −ρ9(λ, ν)/ρ1(λ, ν) e−ip(λ,ν) = −ρ8(λ, ν)/ρ9(λ, ν). (5.6)

The commutators between Detq(A(µ)ν) and the various operators iñT (λ)ν are
calculated from the exchange relation (3.10). The resulting commutators are the same
as the case of the original Hubbard model (ν = 0), which is summarized in appendix B.2
of [21]. Hence, the commutators between the HamiltonianĤlong and the operators in the
matrix T̃ (λ)ν are also the same as theν = 0 case;

[Ĥlong, Ba1(λ)ν ] = −(2 cosp(λ)+ U/2)Ba1(λ)ν (5.7)

[Ĥlong, Ba2(λ)ν ] = (2 cosk(λ)+ U/2)Ba2(λ)ν (5.8)

[Ĥlong, C1a(λ)ν ] = (2 cosp(λ)+ U/2)C1a(λ)ν (5.9)

[Ĥlong, C2a(λ)ν ] = −(2 cosk(λ)+ U/2)C2a(λ)ν (5.10)

[Ĥlong,D12(λ)ν ] = 2(eip(λ) + e−ik(λ))D12(λ)ν (5.11)

[Ĥlong,D21(λ)ν ] = −2(eip(λ) + e−ik(λ))D21(λ)ν (5.12)

where

eik(λ) = −e2h(λ) cotλ eip(λ) = −e−2h(λ) cotλ. (5.13)
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Other entriesD11(λ), D22(λ) andAab(λ) commute withĤlong. The above results justify
the interpretation ofBa1(λ),C2a(λ) andD21(λ) as creation operators.Ba1(λ) andC2a(λ)

create single-particle excitations, whereasD21(λ) creates a bound state of two particles. For
example, fromĤlong|0〉 = 0 and (5.10) we deduce

ĤlongC2a1(λ1)ν . . . C2an(λn)ν |0〉 = −
n∑
j=1

(2 cosk(λj )+ U/2) C2a1(λ1)ν . . . C2an(λn)ν |0〉.

(5.14)

Similarly, the applications of the operatorsBa1(λ) or mixed products of operatorsBa1(λ)

andC2a(λ) on the vacuum produce eigenstates of the Hamiltonian.
Let us consider the relation between these creation operators and Yangian Y(su(2)).

Since the Yangian generatorsQa
n(ν) (n = 0, 1; a = x, y, z) are coefficients of the power

expansion ofA(µ)ν , the commutators betweenQa
n(ν) and operatorsB(λ)ν , C(λ)ν , and

D(λ)ν can be obtained from (3.10). The results are the same as in the case of the Hubbard
model [21];

[Qa
0(ν), B(λ)ν ] = − 1

2 σ̃
aB(λ)ν (5.15)

[Qa
1(ν), B(λ)ν ] = sinp(λ)σ̃ aB(λ)ν + U

2
εabcσ̃ bB(λ)νQ

c
0(ν) (5.16)

[Qa
0(ν), C(λ)ν ] = 1

2C(λ)νσ̃
a (5.17)

[Qa
1(ν), C(λ)ν ] = − sink(λ)C(λ)νσ̃

a + U
2
εabcC(λ)νσ̃

bQc
0(ν) (5.18)

[Qa
0(ν),D(λ)ν ] = [Qa

1(ν),D(λ)ν ] = 0. (5.19)

These commutators will be used to investigate Yangian representations of the multiparticle
eigenstates.

5.2. Scattering states

Observing the cases of other integrable models studied earlier [22, 32], we propose the
following two pairs of normalized creation operators of scattering states,

Rα(λ)
†
ν = i3−α

ρ1(λ, ν)

ρ2(λ, ν)
C2α(λ)νD22(λ)

−1
ν (α = 1, 2) (5.20)

R̂α(λ)
†
ν = iα−1ρ9(λ, ν)

ρ6(λ, ν)
B3−α,1(λ)νD11(λ)

−1
ν (α = 1, 2). (5.21)

In these formulaeα = 1 corresponds to spin-up andα = 2 to spin-down. The numerical
prefactors have been obtained by demanding thatRα(λ)

†
ν and R̂α(λ)†ν generate normalized

one-particle states,

Rα(λ)
†
ν |0〉 =

∑
j

e−ijk(λ,ν)c
†
j,α|0〉 R̂α(λ)

†
ν |0〉 =

∑
j

e−ijp(λ,ν)c
†
j,α|0〉. (5.22)

Hereafter we assume thatλ is chosen in such a way thatRα(λ)†ν andR̂α(λ)†ν create physical
states. This means forRα(λ)†ν that k(λ, ν) has to be real and for̂Rα(λ)†ν that p(λ, ν) has
to be real.

By the method in [33], Hermitian conjugation can be performed on the operatorsRα(λ)ν
and R̂α(λ)ν , and the resulting normalized annihilation operators are

Rα(λ)ν = i2−α
ρ8(λ

′, ν)
ρ6(λ′, ν)

D11(λ)
−1
ν C1,3−α(λ)ν (5.23)



6378 S Murakami

R̂α(λ)ν = iα−2ρ9(λ
′, ν)

ρ2(λ′, ν)
D22(λ)

−1
ν Bα2(λ)ν (5.24)

with λ′ = π/2−λ∗. The commutation rules between the operatorsRα(λ)
†
ν , R̂α(λ)

†
ν , Rα(λ)ν ,

R̂α(λ)ν are

Rα(λ)
†
νRβ(µ)

†
ν = −r(λ, µ)γ δ,αβRγ (µ)†νRδ(λ)†ν (5.25)

Rα(λ)νRβ(µ)
†
ν = −r(µ, λ)γα,δβRγ (µ)†νRδ(λ)ν (5.26)

R̂α(λ)
†
νR̂β(µ)

†
ν = −r(µ, λ)γ δ,αβR̂γ (µ)†νR̂δ(λ)†ν (5.27)

R̂α(λ)νR̂β(µ)
†
ν = −r(λ, µ)γα,δβR̂γ (µ)†νR̂δ(λ)ν (5.28)

Rα(λ)
†
νR̂β(µ)

†
ν = −R̂β(µ)†νRα(λ)†ν (5.29)

Rα(λ)νR̂β(µ)
†
ν = −R̂β(µ)†νRα(λ)ν. (5.30)

Here we neglectedδ-function contributions from some singular points, e.g.λ = µ.
The operatorsRα(λ), Rα(λ)

† and R̂α(λ), R̂α(λ)
† form a representation of the

graded Zamolodchikov–Faddeev algebra withS-matrix r(λ, µ). These representations
may be identified as representations of left and right Zamolodchikov–Faddeev algebra,
respectively [34, 22, 35–37]. The operatorsRα(λ)† and R̂α(λ)† are graded as odd, which
implies that they are creation operators of fermionic quasiparticles.

We shall present two-particle states generated byRα(λ)
† to know the physical meanings

of R†α(λ)ν ;

R1(λ)
†
νR1(µ)

†
ν |0〉 =

∑
j,l

c
†
j↑c
†
l↑e
−ijk(λ,ν)e−ilk(µ,ν)|0〉 (5.31)

R2(λ)
†
νR2(µ)

†
ν |0〉 =

∑
j,l

c
†
j↓c
†
l↓e
−ijk(λ,ν)e−ilk(µ,ν)|0〉 (5.32)

R1(λ)
†
νR2(µ)

†
ν |0〉 =

∑
j,l

c
†
j↑c
†
l↓

[
θ(j < l)e−ijk(λ,ν)e−ilk(µ,ν) v(λ)− v(µ)

v(λ)− v(µ)+ iU

+θ(j < l)e−ijk(λ,ν)e−ilk(µ,ν) + θ(j < l)e−ilk(λ,ν)e−ijk(µ,ν) −iU

v(λ)− v(µ)+ iU

+δjle−ij{k(λ,ν)+k(µ,ν)}F(λ,µ, ν)
]
|0〉 (5.33)

R2(λ)
†
νR1(µ)

†
ν |0〉 =

∑
j,l

c
†
j↓c
†
l↑

[
θ(j > l)e−ijk(λ,ν)e−ilk(µ,ν) v(λ)− v(µ)

v(λ)− v(µ)+ iU

+θ(j < l)e−ijk(λ,ν)e−ilk(µ,ν) + θ(j < l)e−ilk(λ,ν)e−ijk(µ,ν) −iU

v(λ)− v(µ)+ iU

+δjle−ij{k(λ,ν)+k(µ,ν)}F(λ,µ, ν)
]
|0〉 (5.34)

where

F(λ,µ, ν) = ρ9ρ6

ρ4ρ8
(λ, µ)(eh(λ)+h(µ)−2h(ν) cosλ cosµ+ e−h(λ)−h(µ)+2h(ν) sinλ sinµ). (5.35)

From these wavefunctions, similar to the case of the Hubbard model, we conjecture that the
n-particle state

Rα1(λ1)
†
ν . . . Rαn(λn)

†
ν |0〉 (5.36)
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is a normalized in-state ifk(λ1, ν) < · · · < k(λn, ν) and a normalized out-state if
k(λ1, ν) > · · · > k(λn, ν). Here ‘normalized’ means that the magnitude of the incident
wave is unity. Similarly, for theR̂ operators, we conjecture that then-particle state

R̂α1(λ1)
†
ν . . . R̂αn(λn)

†
ν |0〉 (5.37)

is a normalized out-state ifp(λ1, ν) < · · · < p(λn, ν) and a normalized in-state if
p(λ1, ν) > · · · > p(λn, ν). We have not discovered its proof yet.

The Yangian representation of the multiparticle states can be investigated by the
following commutators from (5.15)–(5.19);

[Qa
0(ν), Rα(λ)

†
ν ] = 1

2Rβ(λ)
†
νσ

a
βα (5.38)

[Qa
1(ν), Rα(λ)

†
ν ] = − sink(λ)Rβ(λ)

†
νσ

a
βα +

U

2
εabcRβ(λ)

†
νσ

b
βαQ

c
0(ν) (5.39)

[Qa
0(ν), R̂α(λ)

†
ν ] = 1

2R̂β(λ)
†
νσ

a
βα (5.40)

[Qa
1(ν), R̂α(λ)

†
ν ] = − sinp(λ)R̂β(λ)

†
νσ

a
βα −

U

2
εabcR̂β(λ)

†
νσ

b
βαQ

c
0(ν). (5.41)

These formulae induce an action of the Yangian onn-particle states [38, 26, 21]. Noting
thatQa

0(ν)|0〉 = 0= Qa
1(ν)|0〉, we obtain the action of the Yangian on then = 1 sector as

Qa
0(ν)Rα(λ)

†
ν |0〉 = 1

2σ
a
βαRβ(λ)

†|0〉 (5.42)

Qa
1(ν)Rα(λ)

†
ν |0〉 = − sink(λ)σ aβαRβ(λ)

†
ν |0〉 (5.43)

which is identified as the fundamental representationW1(−2 sink(λ)).
The 2n-dimensional representation formed byn-particle states (5.36) can be studied

in a similar manner as [26, 21], and is identified as the tensor product representation
W1(−2 sink(λ1))⊗ . . .⊗W1(−2 sink(λn)) with comultiplication1 defined by

1(Qa
0) = Qa

0 ⊗ 1+ 1⊗Qa
0 (5.44)

1(Qa
1) = Qa

1 ⊗ 1+ 1⊗Qa
1 + UεabcQb

0 ⊗Qc
0. (5.45)

This representation is irreducible sincek(λi)’s are real. Hence, we conclude that all the
n-particle states of (5.36) can be constructed by applying the Yangian generatorsQa

n(ν) to
the highest weight state

R↑(λ1)
†
ν . . . R↑(λn)

†
ν |0〉 (5.46)

which is clearly proportional to

c↑(k(λ1, ν))
† . . . c↑(k(λn, ν))†|0〉 (5.47)

with cα(k)
† = ∑

j e−ijkc
†
jα. If we use R̂ operators instead ofR, we reach the similar

conclusion withk(λ) replaced byp(λ) and the definition of the comultiplication changed
to

1′(Qa
0) = Qa

0 ⊗ 1+ 1⊗Qa
0 (5.48)

1′(Qa
1) = Qa

1 ⊗ 1+ 1⊗Qa
1 − UεabcQb

0 ⊗Qc
0. (5.49)

5.3. Bound states

In order to investigate structures of bound states, let us begin with the two-particle bound
states. Among two-particle states

C2a(λ1)νC2b(λ2)ν |0〉 (5.50)
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we should set(a, b) = (2, 1), (1, 2) in order to obtain bound states, which follow from
an explicit calculation of wavefunctions. In the former case, in which the eigenstate is
calculated as

C22(λ1)νC21(λ2)ν |0〉 ∝
∑
j,l

c
†
j↓c
†
l↑[θ(j > l)(v(λ1)− v(λ2))e

−ijk(λ1,ν)e−ilk(λ2,ν)

+θ(j < l)(v(λ1)− v(λ2)+ iU)e−ijk(λ1,ν)e−ilk(λ2,ν)

+θ(j < l)(−iU)e−ilk(λ1,ν)e−ijk(λ2,ν)

+δjle−ij{k(λ1,ν)+k(λ2,ν)}(v(λ1)− v(λ2)+ iU)F(λ1, λ2, ν)]|0〉. (5.51)

The condition for it to be a bound state is

v(λ1)− v(λ2) = −iU (5.52)

Im k(λ1, ν) = −Im k(λ2, ν) < 0. (5.53)

Provided that these conditions hold, it follows that

C22(λ1)νC21(λ2)ν = −C21(λ1)νC22(λ2)ν (5.54)

which implies that(a, b) = (2, 1) and(2, 1) cases give the same bound state. To summarize,
among the two-particle states (5.50), there is only one bound state, which is achieved in the
case(a, b) = (2, 1) with the conditions (5.52), (5.53). We have not, however, succeeded to
investigate this condition further due to the complicated form of the functionk(λ, ν).

Due to this complicated form ofk(λ, ν), we have not discovered general forms of
multiparticle bound states or their creation operators. However, if we simply mimic the
construction of bound state operators of the original Hubbard model in [21], we can formally
make ‘bound-state operators’ by

C
(2m)
2 (λ1, . . . , λ2m)ν = C22(λ1)νC21(λ2)νC22(λ3)νC21(λ4)ν . . . C22(λ2m−1)νC21(λ2m)ν (5.55)

D
(2m)
22 (λ1, . . . , λ2m)ν = D22(λ1)νD22(λ2)ν . . . D22(λ2m−1)νD22(λ2m)ν (5.56)

R(2m)(λ1, . . . , λ2m)
†
ν = C(2m)2 (λ1, . . . , λ2m)νD

(2m)
22 (λ1, . . . , λ2m)

−1
ν (5.57)

where

k(λ2s)+ p(λ2s−1) = π (mod 2π) (5.58)

sink(λ2s−1) = sink(λ1)+ iU(s − 1)

2
(s = 1, . . . , m). (5.59)

The commutation rules ofR(2m)† with R(2n)†, R† or Qa
n(ν) are the same as those in the case

of the usual Hubbard model ((6.58)–(6.60) in [21]). However, the serious problem with
this operatorR(2m)† is that we do not know for certain whether it produces physical states.
As the case of two-particle bound states (m = 1) is already difficult to study, there is little
hope that we can obtain a deep understanding of multiparticle bound-state operators.

6. Concluding remarks and discussion

In this paper we have introduced new integrable variant of the nearest-neighbour Hubbard
model with variable range hopping. We have constructed it by the quantum inverse scattering
method on the infinite interval at zero density, using the one-parameter deformation of the
L-matrix of the Hubbard model. By construction, together with the knowledge of the case
of the Hubbard model studied earlier, this Hamiltonian is among an infinite number of
commuting operators and thus integrable. Moreover, it commutes with operatorsQa

n(ν)

(n = 0, 1; a = x, y, z), which form a representation of the Y(su(2)) Yangian. If we
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take the HamiltonianĤ ′long or Ĥ ′′long instead of Ĥlong, it is invariant under the partial
particle–hole transformation and is Y(su(2)) ⊕ Y(su(2)) invariant. Normalized creation
and annihilation operators of quasiparticles are explicitly constructed and are shown to
form the Zamolodchikov–Faddeev algebra. Multiparticle scattering states are constructed
with these operators, while bound states still require further study.

The merits of deriving the Hamiltonian along such lines are as follows. First, the
existence of the Yangian symmetry can be established without anyad hocmethods. Second,
the forms of multiparticle states upon the zero-density vacuum can be derived without any
ansatz. They are calculated directly from actions of the elements of the monodromy matrix
T̃ (λ)ν on the vacuum. Derivation of multiparticle wavefunctions by making some kind of
‘Bethe ansatz’ is rather difficult due to the complicated structure of the Hamiltonian.

Although it is not easy to interpret the physical meaning of the term of the phase factor
exp(±2h(ν)(1− ni,−σ − nj,−σ )) in the Hamiltonian, it would be interesting to investigate
thermodynamic properties of this new integrable model and it will be studied in separate
papers.
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Appendix. Expressions of theŘ-matrix and the L-matrix

In this appendix we present the expressions of theŘ-matrix and theL-matrix. TheL-
matrix [6] is given as

Lj (λ) = eh(λ)σ
z⊗σ z/2

[(−fj↑(λ) icj↑
c
†
j↑ gj↑(λ)

)
⊗s

(
fj↓(λ) cj↓

ic†j↓ −gj↓(λ)
)]

eh(λ)σ
z⊗σ z/2 (6.1)

with the gradingP(1) = 0, P(2) = 1 and functions

fjσ (λ) = (i cotλ)njσ sinλ gjσ (λ) = (−i tanλ)njσ cosλ. (6.2)

The Ř-matrix is given as [6]

Ř(λ, µ)

=



ρ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ρ2 0 0 iρ9 0 0 0 0 0 0 0 0 0 0 0
0 0 ρ2 0 0 0 0 0 iρ9 0 0 0 0 0 0 0
0 0 0 ρ3 0 0 −iρ6 0 0 iρ6 0 0 −ρ8 0 0 0
0 −iρ10 0 0 ρ2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ρ4 0 0 0 0 0 0 0 0 0 0
0 0 0 iρ6 0 0 ρ5 0 0 −ρ7 0 0 −iρ6 0 0 0
0 0 0 0 0 0 0 ρ2 0 0 0 0 0 −iρ10 0 0
0 0 −iρ10 0 0 0 0 0 ρ2 0 0 0 0 0 0 0
0 0 0 −iρ6 0 0 −ρ7 0 0 ρ5 0 0 iρ6 0 0 0
0 0 0 0 0 0 0 0 0 0 ρ4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ρ2 0 0 −iρ10 0
0 0 0 −ρ8 0 0 iρ6 0 0 −iρ6 0 0 ρ3 0 0 0
0 0 0 0 0 0 0 iρ9 0 0 0 0 0 ρ2 0 0
0 0 0 0 0 0 0 0 0 0 0 iρ9 0 0 ρ2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ρ1


(6.3)
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whereρj = ρj (λ, µ) is defined by

ρ1 = (el cosλ cosµ+ e−l sinλ sinµ)ρ2

ρ4 = (el sinλ sinµ+ e−l cosλ cosµ)ρ2

ρ9 = (−el cosλ sinµ+ e−l sinλ cosµ)ρ2

ρ10 = (el sinλ cosµ− e−l cosλ sinµ)ρ2

ρ3 = el cosλ cosµ− e−l sinλ sinµ

cos2 λ− sin2µ
ρ2

ρ5 = −el sinλ sinµ+ e−l cosλ cosµ

cos2 λ− sin2µ
ρ2

ρ6 = e−2h(µ) cosλ sinλ− e−2h(λ) cosµ sinµ

cos2 λ− sin2µ
ρ2

ρ7 = ρ5− ρ4

ρ8 = ρ3− ρ1

with l = h(λ) − h(µ). ρ2 is an overall normalization factor of thěR-matrix and can be
taken as an arbitrary function ofλ andµ. The functionh(λ) is defined by (2.5). These
matrices are identical with those in [6], except for the point that the spectral parameters
λ andµ are shifted byπ/4. These matrices satisfy the exchange relation (2.3). Its one-
parameter deformed version is given by (2.14) with theŘ-matrix presented above and the
newL-matrix is given by

Lj (λ)11
ν = ρ1nj↑nj↓ − iρ10(nj↑ + nj↓ − 2nj↑nj↓)− ρ8(1− nj↑)(1− nj↓)

Lj (λ)12
ν = −iρ2nj↑cj↓ − ρ6(1− nj↑)cj↓

Lj (λ)13
ν = −ρ2cj↑nj↓ + iρ6cj↑(1− nj↓)

Lj (λ)14
ν = iρ3cj↑cj↓

Lj (λ)21
ν = ρ2nj↑c

†
j↓ − iρ6(1− nj↑)c†j↓

Lj (λ)22
ν = ρ9nj↑nj↓ + iρ4nj↑(1− nj↓)− iρ7(1− nj↑)nj↓ + ρ9(1− nj↑)(1− nj↓)

Lj (λ)23
ν = ρ5cj↑c

†
j↓

Lj (λ)24
ν = ρ6cj↑nj↓ + iρ2cj↑(1− nj↓)

Lj (λ)31
ν = iρ2c

†
j↑nj↓ + ρ6c

†
j↑(1− nj↓)

Lj (λ)32
ν = ρ5c

†
j↑cj↓

Lj (λ)33
ν = ρ9nj↑nj↓ − iρ7nj↑(1− nj↓)+ iρ4(1− nj↑)nj↓ + ρ9(1− nj↑)(1− nj↓)

Lj (λ)34
ν = −iρ6nj↑cj↓ + ρ2(1− nj↑)cj↓

Lj (λ)41
ν = −iρ3c

†
j↑c
†
j↓

Lj (λ)42
ν = −iρ6c

†
j↑nj↓ + ρ2c

†
j↑(1− nj↓)

Lj (λ)43
ν = ρ6nj↑c

†
j↓ + iρ2(1− nj↑)c†j↓

Lj (λ)44
ν = ρ8nj↑nj↓ + iρ10(nj↑ + nj↓ − 2nj↑nj↓)− ρ1(1− nj↑)(1− nj↓)

whereρj = ρj (λ, ν). One can easily check thatLj (λ)ν=0 ∝ Lj (λ).
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